Structural characteristics of polysaccharides that induce protection against intra-abdominal abscess formation

Author:

Tzianabos A O1,Onderdonk A B1,Zaleznik D F1,Smith R S1,Kasper D L1

Affiliation:

1. Channing Laboratory, Brigham and Women's Hospital, Departments of Medicine, Boston, Massachusetts 02115.

Abstract

Bacteroides fragilis is the anaerobe most commonly isolated from clinical cases of intra-abdominal sepsis. In a rodent model of this disease process, intraperitoneal injection of the capsular polysaccharide complex (CPC) from B. fragilis provokes abscess formation, while subcutaneous administration of this complex confers protection against B. fragilis-induced intra-abdominal abscesses. The CPC consists of two discrete polysaccharides, polysaccharides A and B (PS A and PS B), each possessing oppositely charged structural groups critical to the ability of these carbohydrates to induce the formation of abscesses. Other bacterial polysaccharides that possess oppositely charged groups (such as the group antigen or capsular polysaccharide from Streptococcus pneumoniae type 1 strains) also exhibited potent abscess-inducing capabilities. We report here that positively and negatively charged groups on polysaccharides are also essential for inducing protection against abscess formation. Vaccination of rats with B. fragilis PS A, PS B, or the S. pneumoniae type 1 capsule protected against intra-abdominal abscesses subsequent to intraperitoneal challenge with each of these polysaccharides. Chemical conversion of the free amino or carboxyl groups on PS A to uncharged N-acetyl or hydroxymethyl groups, respectively, abrogated the ability of this polymer to confer protection against polysaccharide-mediated abscess formation. Adoptive transfer of splenic T cells from polysaccharide-vaccinated rats to naive animals demonstrated that T cells mediated this protective activity. T cells transferred from animals vaccinated with a polysaccharide repeating unit (Salmonella typhi Vi antigen) that normally contains one carboxyl group but was chemically converted to a polymer that possesses both free amino and carboxyl groups (accomplished by de-N-acetylating the Vi antigen) protected naive T-cell recipients against polysaccharide-induced abscesses. These results demonstrate that a distinct structural motif associated with the B. fragilis polysaccharides is necessary for induction of protective immunity against abscess formation associated with intra-abdominal sepsis. However, protection is not antigen specific in a traditional sense. Rather, the protective ability of these structurally dissimilar polysaccharides is conferred by, and perhaps specific for, a motif of oppositely charged groups.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference28 articles.

1. Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using resolution NMR spectroscopy;Baumann H.;Biochemistry,1992

2. Anaerobic infections;Gorbach S. L.;N. Engl. J. Med.,1974

3. Effects of pH and polysaccharides on peptide binding to class II major histocompatibility complex molecules;Harding C. V.;Proc. Natl. Acad. Sci. USA,1991

4. Strukturaufklarung des Viantigens aus Citrobacterfreundii (E. coli) 5396/38;Heyns K.;Carbohydr. Res.,1967

5. MHC interaction and T cell recognition of carbohydrates and glycopeptides;Ishioka G. Y.;J. Immunol.,1992

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3