A minor 987P protein different from the structural fimbrial subunit is the adhesin

Author:

Khan A S1,Schifferli D M1

Affiliation:

1. Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia 19104.

Abstract

The 987P fimbriae produced by enterotoxigenic strains of Escherichia coli isolated from piglets mediate bacterial attachment to intestinal epithelial cells. These fimbriae consist essentially of a tight helical arrangement of one structural protein subunit encoded by fasA. Fimbriation and specific adhesion requires the expression of seven additional genes (fasB to fasH). In this study, we investigated whether FasA or another Fas protein, e.g., a potential minor fimbrial component, harbors the binding moiety for the pig 987P receptor glycoproteins. Fas proteins, specifically radiolabeled with an in vivo T7 expression system, were isolated from the periplasm and incubated with receptor-containing brush borders isolated from piglet intestinal epithelial cells. FasG bound best to brush borders, whereas no FasA adhered to them. Additional evidence that FasG, and not FasA, is the 987P adhesin was provided by ligand blotting inhibition assays indicating that FasG alone inhibited fimbrial binding to 987P receptors and that in the absence of FasG, other Fas proteins were not inhibitory. FasG was identified in purified fimbrial preparations with a specific anti-FasG antibody probe. Moreover, FasG was shown to be tightly associated with the fimbrial structure, since it was released only after disassembling fimbriae by heat and sodium dodecyl sulfate treatments. The primary structure of FasG, deduced from the DNA sequence, exhibited 19.1 to 24.4% similarity to FasA and large minor components and/or adhesins of other fimbriae. FasG is the first-described minor fimbrial subunit shown to be essential for both fimbrial biogenesis and specific adhesion.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3