Appropriate coating methods and other conditions for enzyme-linked immunosorbent assay of smooth, rough, and neutral lipopolysaccharides of Pseudomonas aeruginosa

Author:

Bantroch S1,Bühler T1,Lam J S1

Affiliation:

1. Canadian Bacterial Diseases Network, University of Guelph, Ontario, Canada.

Abstract

Smooth, rough, and neutral forms of lipopolysaccharide (LPS) from Pseudomonas aeruginosa were used to assess the appropriate conditions for effective enzyme-linked immunosorbent assay (ELISA) of LPS. Each of these forms of well-defined LPS was tested for the efficiency of antigen coating by various methods as well as to identify an appropriate type of microtiter plate to use. For smooth LPS, the standard carbonate-bicarbonate buffer method was as efficient as the other sensitivity-enhancing plate-coating methods compared. The rough LPS, which has an overall hydrophobic characteristic, was shown to adhere effectively, regardless of the coating method used, to only one type of microtiter plate, CovaLink. This type of plate has secondary amine groups attached on its polystyrene surface by carbon chain spacers, which likely favors hydrophobic interactions between the rough LPS and the well surfaces. Dehydration methods were effective for coating microtiter plates with the neutral LPS examined, which is composed predominantly of a D-rhamnan. For the two dehydration procedures, LPS suspended in water or the organic solvent chloroform-ethanol was added directly to the wells, and the solvent was allowed to dehydrate or evaporate overnight. Precoating of plates with either polymyxin or poly-L-lysine did not give any major improvement in coating with the various forms of LPS. The possibility of using proteinase K- and sodium dodecyl sulfate-treated LPS preparations for ELISAs was also investigated. Smooth LPS prepared by this method was as effective in ELISA as LPS prepared by the hot water-phenol method, while the rough and neutral LPSs prepared this way were not satisfactory for ELISA.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3