Zinc Competition among the Intestinal Microbiota

Author:

Gielda Lindsay M.1,DiRita Victor J.12

Affiliation:

1. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA

2. Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA

Abstract

ABSTRACT Bioavailable levels of trace metals, such as iron and zinc, for bacterial growth in nature are sufficiently low that most microbes have evolved high-affinity binding and transport systems. The microbe Campylobacter jejuni lives in the gastrointestinal tract of chickens, the principal source of human infection. A high-affinity ABC transporter for zinc uptake is required for Campylobacter survival in chicken intestines in the presence of a normal microbiota but not when chickens are raised with a limited microbiota. Mass spectrometric analysis of cecal contents revealed the presence of numerous zinc-binding proteins in conventional chicks compared to the number in limited-microbiota chicks. The presence of a microbiota results in the production of host zinc-binding enzymes, causing a growth restriction for bacteria that lack the high-affinity zinc transporter. Such transporters in a wide range of pathogenic bacteria make them good targets for the development of broad-spectrum antimicrobials. IMPORTANCE Zinc is an essential trace element for the growth of most organisms. Quantities of zinc inside cells are highly regulated, as too little zinc does not support growth, while too much zinc is toxic. Numerous bacterial cells require zinc uptake systems for growth and virulence. The work presented here demonstrates that the microbiota in the gastrointestinal tract reduces the quantity of zinc. Without a high-affinity zinc transporter, Campylobacter jejuni , a commensal organism of chickens, is unable to replicate or colonize the gastrointestinal tract. This is the first demonstration of zinc competition between microbiota in the gastrointestinal tract of a host. These results could have profound implications in the field of microbial pathogenesis and in our understanding of host metabolism and the microbiota.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3