Evolution and Distribution of the ospC Gene, a Transferable Serotype Determinant of Borrelia burgdorferi

Author:

Barbour Alan G.1,Travinsky Bridgit1

Affiliation:

1. Departments of Microbiology and Molecular Genetics, Medicine, and Ecology and Evolutionary Biology, University of California, Irvine, California, USA

Abstract

ABSTRACT Borrelia burgdorferi , an emerging bacterial pathogen, is maintained in nature by transmission from one vertebrate host to another by ticks. One of the few antigens against which mammals develop protective immunity is the highly polymorphic OspC protein, encoded by the ospC gene on the cp26 plasmid. Intragenic recombination among ospC genes is known, but the extent to which recombination extended beyond the ospC locus itself is undefined. We accessed and supplemented collections of DNA sequences of ospC and other loci from ticks in three U.S. regions (the Northeast, the Midwest, and northern California); a total of 839 ospC sequences were analyzed. Three overlapping but distinct populations of B. burgdorferi corresponded to the geographic regions. In addition, we sequenced 99 ospC flanking sequences from different lineages and compared the complete cp26 sequences of 11 strains as well as the cp26 bbb02 loci of 56 samples. Besides recombinations with traces limited to the ospC gene itself, there was evidence of lateral gene transfers that involved (i) part of the ospC gene and one of the two flanks or (ii) the entire ospC gene and different lengths of both flanks. Lateral gene transfers resulted in different linkages between the ospC gene and loci of the chromosome or other plasmids. By acquisition of the complete part or a large part of a novel ospC gene, an otherwise adapted strain would assume a new serotypic identity, thereby being comparatively fitter in an area with a high prevalence of immunity to existing OspC types. IMPORTANCE The tick-borne zoonosis Lyme borreliosis is increasing in incidence and spreading geospatially in North America. Further understanding of the evolution and genetics of its cause, Borrelia burgdorferi , in its environments fosters progress toward ecologically based control efforts. By means of DNA sequencing of a large sample collection of the pathogen from across the United States, we studied the gene for the bacterium's highly diverse OspC protein, protective immunity against which develops in animals. We found that the distributions and frequencies of types of OspC genes differed between populations of B. burgdorferi in the Northeast, the Midwest, and California. Over time, OspC genes were transferred between strains through recombinations involving the whole or parts of the gene and one or both flanks. Acquisitions of OspC genes that are novel for the region confer to recipients unique identities to host immune systems and, presumably, selective advantage when immunity to existing types is widespread among hosts.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3