Author:
Andrews B J,McLeod M,Broach J,Sadowski P D
Abstract
The 2 micron plasmid of Saccharomyces cerevisiae codes for a site-specific recombinase, the FLP protein, that catalyzes efficient recombination across two 599-base-pair (bp) inverted repeats of the plasmid DNA both in vivo and in vitro. We analyzed the interaction of the purified FLP protein with the target sequences of two point mutants that exhibit impaired FLP-mediated recombination in vivo. One mutation lies in one of the 13-bp repeat elements that had been previously shown to be protected from DNase digestion by the FLP protein. This mutation dramatically reduces FLP-mediated recombination in vitro and appears to act by reducing the binding of FLP protein to its target sequence. The second mutation lies within the 8-bp core region of the FLP target sequence. The FLP protein introduces staggered nicks surrounding this 8-bp region, and these nicks are thought to define the sites of strand exchange. The mutation in the core region abolishes recombination with a wild-type site. However, recombination between two mutated sites is very efficient. This result suggests that proper base pairing between the two recombining sites is an important feature of FLP-mediated recombination.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献