Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2.

Author:

Cohen R,Holland J P,Yokoi T,Holland M J

Abstract

There are two yeast enolase genes, designated ENO1 and ENO2, which are expressed differentially in vegetative cells grown on glucose and in cells grown on gluconeogenic carbon sources. ENO2 is induced more than 20-fold in cells grown on glucose, whereas ENO1 expression is similar in cells grown on glucose and in cells grown on gluconeogenic carbon sources. Sequences within the 5' flanking region of ENO2 which are required for glucose-dependent induction were identified by deletion mapping analysis. These studies were carried out by using a fused gene containing the ENO2 5' flanking sequences and the ENO1 coding sequences. This fused gene undergoes glucose-dependent induction and is expressed at the same level as the resident ENO2 gene in cells grown on glucose or gluconeogenic carbon sources. Expression of fused genes containing deletion mutations within the ENO2 5' flanking region was monitored after integration at the ENO1 locus of a strain carrying a deletion of the resident ENO1 coding sequences. This analysis showed that there are two upstream activation sites located immediately upstream and downstream from a position 461 base pairs upstream from the transcriptional initiation site. Either one of these upstream activation sites is sufficient for glucose-dependent induction and normal gene expression in the presence of gluconeogenic carbon sources. Deletion of both regulatory regions results in a complete loss of gene expression. The regulatory regions function normally in both orientations relative to the coding sequences. Mutant fused genes containing small deletions within the regulatory regions were constructed; these genes were expressed normally in gluconeogenic carbon sources but were not induced in the presence of glucose. Based on this analysis, ENO2 contains a cis-acting regulatory region which is required for gene expression and mediates glucose-dependent induction of gene expression.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3