Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti

Author:

Rastogi V K1,Watson R J1

Affiliation:

1. Plant Research Centre, Agriculture Canada, Ottawa, Ontario.

Abstract

A mutant of Rhizobium meliloti, 4R3, which is unable to grow on aspartate has been isolated. The defect is specific to aspartate utilization, since 4R3 is not an auxotroph and grows as well as its parent strain on other carbon and nitrogen sources. The defect was correlated with an inability to fix nitrogen within nodules formed on alfalfa. Transport of aspartate into the mutant cells was found to be normal. Analysis of enzymes involved in aspartate catabolism showed a significantly lower level of aspartate aminotransferase activity in cell extracts of 4R3 than in the wild type. Two unrelated regions identified from a genomic cosmid bank each complemented the aspartate catabolism and symbiotic defects in 4R3. One of the cosmids was found to encode an aspartate aminotransferase enzyme and resulted in restoration of aspartate aminotransferase activity in the mutant. Analysis of the region cloned in this cosmid by transposon mutagenesis showed that mutations within this region generate the original mutant phenotypes. The second type of cosmid was found to encode an aromatic aminotransferase enzyme and resulted in highly elevated levels of aromatic aminotransferase activity. This enzyme apparently compensated for the mutation by its ability to partially utilize aspartate as a substrate. These findings demonstrate that R. meliloti contains an aspartate aminotransferase activity required for symbiotic nitrogen fixation and implicate aspartate as an essential substrate for bacteria in the nodule.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3