Myeloid Translocation Gene Family Members Associate with T-Cell Factors (TCFs) and Influence TCF-Dependent Transcription

Author:

Moore Amy C.1,Amann Joseph M.1,Williams Christopher S.123,Tahinci Emilios4,Farmer Tiffany E.1,Martinez J. Andres5,Yang Genyan1,Luce K. Scott1,Lee Ethan43,Hiebert Scott W.13

Affiliation:

1. Department of Biochemistry

2. Department of Medicine, Division of Gastroenterology

3. Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

4. Department of Cell and Developmental Biology

5. Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition

Abstract

ABSTRACT Canonical Wnt signaling is mediated by a molecular “switch” that regulates the transcriptional properties of the T-cell factor (TCF) family of DNA-binding proteins. Members of the myeloid translocation gene (MTG) family of transcriptional corepressors are frequently disrupted by chromosomal translocations in acute myeloid leukemia, whereas MTG16 may be inactivated in up to 40% of breast cancer and MTG8 is a candidate cancer gene in colorectal carcinoma. Genetic studies imply that this corepressor family may function in stem cells. Given that mice lacking Myeloid Translocation Gene Related-1 ( Mtgr1 ) fail to maintain the secretory lineage in the small intestine, we surveyed transcription factors that might recruit Mtgr1 in intestinal stem cells or progenitor cells and found that MTG family members associate specifically with TCF4. Coexpression of β-catenin disrupted the association between these corepressors and TCF4. Furthermore, when expressed in Xenopus embryos, MTG family members inhibited axis formation and impaired the ability of β-catenin and XLef-1 to induce axis duplication, indicating that MTG family members act downstream of β-catenin. Moreover, we found that c- Myc , a transcriptional target of the Wnt pathway, was overexpressed in the small intestines of mice lacking Mtgr1 , thus linking inactivation of Mtgr1 to the activation of a potent oncogene.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3