In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes

Author:

Bekkering Siroon1,Blok Bastiaan A.123,Joosten Leo A. B.1,Riksen Niels P.1,van Crevel Reinout1,Netea Mihai G.1

Affiliation:

1. Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

2. Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark

3. Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Copenhagen, Denmark

Abstract

ABSTRACT Innate immune memory, or trained immunity, has recently been described to be an important property of cells of the innate immune system. Due to the increased interest in this important new field of immunological investigation, we sought to determine the optimal conditions for an in vitro experimental protocol of monocyte training using three of the most commonly used training stimuli from the literature: β-glucan, the bacillus Calmette-Guérin (BCG) vaccine, and oxidized low-density lipoprotein (oxLDL). We investigated and optimized a protocol of monocyte trained immunity induced by an initial training period with β-glucan, BCG, or oxLDL, followed by washing and resting of the cells and, thereafter, restimulation with secondary bacterial stimuli. The training and resting time intervals were varied to identify the optimal setting for the long-term induction of trained immunity. Trained immunity was assessed in terms of the secondary cytokine response, the production of reactive oxygen species, cell morphology, and induction of glycolysis. Monocytes primed with β-glucan, BCG, and oxLDL showed increased pro- and anti-inflammatory cytokine responses upon restimulation with nonrelated stimuli. Also, all three stimuli induced a switch to glycolysis (the Warburg effect). These effects were most pronounced when the training interval was 24 h and the resting time interval was 6 days. Training with BCG and oxLDL also led to the increased production of reactive oxygen species, whereas training with β-glucan led to the decreased production of reactive oxygen species. We describe the optimal conditions for an in vitro experimental model with human primary monocytes for study of the induction of trained innate immunity by microbial and metabolic stimuli.

Funder

Netherlands Heart Foundation

Netherlands Organization for Scientific Research

European Union Seventh Framework Programma

Dutch Arthritis Foundation

EC | European Research Council

EC | Horizon 2020

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3