PSGL-1 is an evolutionarily conserved antiviral restriction factor

Author:

Jiang Chao1,Mei Miao12ORCID,Liu Ying3,Hou Min1,Jiao Jun1,Tan Ya1,Tan Xu2ORCID

Affiliation:

1. Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University , Beijing, China

2. Chinese Institutes for Medical Research , Beijing, China

3. Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL) , Lausanne, Switzerland

Abstract

ABSTRACT The arms race between viruses and their hosts shaped the evolutionary history and the genome composition of both parties. Restriction factors are the first-line antiviral effectors encoded by the host genomes and are often conserved through evolution to protect the hosts from morbidity, mortality, and even extinction associated with viral infections. There are a number of restriction factors identified so far to counteract HIV infection of the humans. PSGL-1 is a recently characterized human restriction factor that acts both early and late in the viral life cycle, the latter of which is antagonized by the HIV-1 Vpu protein. Here we show in vitro and in a knockout mouse model that PSGL-1’s antiviral function is conserved in mice for combating the murine leukemia virus (MLV). In counter-strike, the glycogag or glycoMA proteins encoded by MLV can interact with mouse PSGL-1, which leads to Cul3-KLHL20 E3 ligase-dependent ubiquitination and degradation of PSGL-1. The amino acids involved in this interaction demonstrate the evidence of positive selection, manifesting the evolution pressure from the antagonism between PSGL-1 and glycogag/glycoMA. Our data support that PSGL-1 is an evolutionarily conserved antiviral restriction factor. Importance Studying the co-evolution between viruses and humans is important for understanding why we are what we are now as well as for developing future antiviral drugs. Here we pinned down an evolutionary arms race between retroviruses and mammalian hosts at the molecular level by identifying the antagonism between a host antiviral restriction factor PSGL-1 and viral accessory proteins. We show that this antagonism is conserved from mouse to human and from mouse retrovirus to HIV. Further studying this antagonism might provide opportunities for developing new antiviral therapies.

Funder

Ministry of Science and Technology of the People's Republic of China

MOST | National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3