A one-tube method of reverse transcription-PCR to efficiently amplify a 3-kilobase region from the RNA polymerase gene to the poly(A) tail of small round-structured viruses (Norwalk-like viruses)

Author:

Ando T1,Monroe S S1,Noel J S1,Glass R I1

Affiliation:

1. Viral Gastroenteritis Section, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. txa5@CIDDVD1.em.cdc.gov

Abstract

Amplification of a 3-kb genome region from the RNA polymerase gene to the 3' poly(A) tail of small round-structured virus (SRSV) by reverse transcription-PCR (RT-PCR) has been difficult to achieve because of a stable secondary structure in a region between the RNA polymerase gene and the 5' end of the second open reading frame. We have developed a one-tube RT-PCR method to efficiently amplify this region. The method comprises three procedures: purification of poly(A)+ RNA from a starting RNA solution by oligo(dT)30 covalently linked to latex particles, buffer exchange, and continuous RT and PCR in a single tube containing all reaction components. The key elements of this method are (i) first-strand cDNA synthesis with the Superscript II version of RNase H- Moloney murine leukemia virus reverse transcriptase at 50 degrees C for 10 min by using the RNA-oligo(dT)30 hybrid on the latex particles as the template and primer, and (ii) PCR by Taq and Pwo DNA polymerases mixed together with a mixture of 12 phased oligo(dT)25 antisense primers. The detection threshold of the one-tube RT-PCR method was as little as 0.2 ng of the crude RNA used as the source of the template. Using this method, we obtained 3-kb products from 24 SRSV strains previously characterized into four genetic groups. These included 5 P1-A, 4 P1-B, 5 P2-A, and 10 P2-B strains. Because SRSVs have not yet been cultivated in vitro, this novel method should facilitate molecular characterization of SRSVs to provide a firm scientific foundation for improvements and refinements of SRSV diagnostics.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3