Early Syncytium Formation by Bovine Leukemia Virus

Author:

Graves Don C.1,Jones Lorraine V.1

Affiliation:

1. Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

Abstract

Bovine leukemia virus (BLV) from either persistently infected bat cells or fetal lamb kidney cells induced rapid syncytium formation in F81 indicator cells. Distinct syncytia were seen within 2 h after inoculation of cells with highly concentrated (500-fold) cell-free BLV preparations and within 4 to 8 h when unconcentrated cell-free BLV preparations were used. Indicator cell densities of 1 × 10 5 to 2 × 10 5 were optimal for rapid and maximal syncytium formation. Pretreatment of BLV with reference BLV leukemic serum and antiserum prepared against purified BLV significantly inhibited (95%) syncytium formation. Reference bovine viral diarrhea virus serum, foamy-like bovine syncytial virus serum, and control serum had little effect (17% inhibition). Antiserum to BLV gp51 inhibited syncytium formation by greater than 96%, whereas antiserum to BLV p24 reduced syncytium activity to a much lesser extent (38% inhibition). Treatment of BLV with β-propiolactone (0.005 to 0.05%) had little or no effect upon syncytium-forming activity, whereas UV irradiation (15 ergs/mm 2 per s for 30 min) reduced, but did not completely destroy, the fusion activity. However, both β-propiolactone and UV irradiation drastically reduced the replication potential of BLV, as demonstrated by the lack of p24 expression in the inoculated cells. Concentrations of cycloheximide, cytosine arabinoside, tunicamycin, and 2-deoxy-D-glucose which effectively blocked cellular macromolecular synthesis did not significantly inhibit syncytium formation. These latter results suggested that de novo protein and DNA synthesis as well as protein glycosylation were not required for early syncytium formation. Thus, these experiments demonstrated that replication of BLV by the indicator cells was not essential for cell fusion.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3