Salmonella Flagellin Induces Tumor Necrosis Factor Alpha in a Human Promonocytic Cell Line

Author:

Ciacci-Woolwine Federica1,Blomfield Ian C.1,Richardson Stephen H.1,Mizel Steven B.1

Affiliation:

1. Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157

Abstract

ABSTRACT During infection of the gastrointestinal tract, salmonellae induce cytokine production and inflammatory responses which are believed to mediate tissue damage in the host. In a previous study, we reported that salmonellae possess the ability to stimulate tumor necrosis factor alpha (TNF-α) accumulation in primary human monocytes, as well as in the human promonocytic cell line U38. In this model system, cytokine upregulation is not due to lipopolysaccharide but is mediated by a released protein. In the present study, Tn phoA transposon mutagenesis was used to identify the TNF-α-inducing factor. A mutant Salmonella strain which lacks the ability to induce TNF-α was isolated from a Tn phoA library. Genetic analysis of this mutant demonstrated that the hns gene has been interrupted by transposon insertion. The hns gene product is a DNA-binding protein that regulates the expression of a variety of unrelated genes in salmonellae. One of the known targets of histone-like protein H1 is flhDC , the master operon which is absolutely required for flagellar expression. Analysis of other nonflagellated mutant Salmonella strains revealed a correlation between the ability to induce TNF-α and the expression of the phase 1 filament subunit protein FliC. Complementation experiments demonstrated that FliC is sufficient to restore the ability of nonflagellated mutant Salmonella strains to upregulate TNF-α, whereas the phase 2 protein FljB appears to complement to a lesser extent. In addition, Salmonella FliC can confer the TNF-α-inducing phenotype on Escherichia coli , which otherwise lacks the activity. Furthermore, assembly of FliC into complete flagellar structures may not be required for induction of TNF-α.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3