Enteric β-Defensin: Molecular Cloning and Characterization of a Gene with Inducible Intestinal Epithelial Cell Expression Associated with Cryptosporidium parvum Infection

Author:

Tarver Alan P.1,Clark Douglas P.2,Diamond Gill1,Russell John P.1,Erdjument-Bromage Hediye3,Tempst Paul3,Cohen Kenneth S.1,Jones Douglas E.2,Sweeney Ray W.2,Wines Mary1,Hwang Shirley1,Bevins Charles L.14

Affiliation:

1. Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia, and

2. Departments of Pediatrics1 and Pathology,2 University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104;

3. Memorial Sloan-Kettering Cancer Center, New York, New York 100213; and

4. Department of Immunology, Gastroenterology and Colorectal Surgery, The Cleveland Clinic Foundation, Cleveland, Ohio 441954

Abstract

ABSTRACT A growing body of evidence suggests that endogenous antibiotics contribute to the innate defense of mammalian mucosal surfaces. In the cow, β-defensins constitute a large family of antibiotic peptides whose members have been previously isolated from the respiratory and oral mucosa, as well as circulating phagocytic cells. A novel bovine genomic clone with sequence related to those of these α-defensins was isolated and characterized. The corresponding cDNA was isolated from a small intestinal library; its open reading frame predicts a deduced sequence of a novel β-defensin, which we designate enteric β-defensin (EBD). Northern blot analysis of a variety of bovine tissues revealed that EBD mRNA is highly expressed in the distal small intestine and colon, anatomic locations distinct from those for previously characterized β-defensins. EBD mRNA was further localized by in situ hybridization to epithelial cells of the colon and small intestinal crypts. Infection of two calves with the intestinal parasite Cryptosporidium parvum induced 5- and 10-fold increases above control levels of EBD mRNA in intestinal tissues. An anchored-PCR strategy was used to identify other β-defensin mRNAs expressed in the intestine. In addition to that of EBD, several low-abundance cDNAs which corresponded to other β-defensin mRNAs were cloned. Most of these clones encoded previously characterized β-defensins or closely related isoforms, but two encoded a previously uncharacterized prepro-β-defensin. Northern blot evidence supported that all of these other β-defensin genes are expressed at levels lower than that of the EBD gene in enteric tissue. Furthermore, some of these β-defensin mRNAs were abundant in bone marrow, suggesting that in enteric tissue their expression may be in cells of hematopoietic origin. Extracts of small intestinal mucosa obtained from healthy cows have numerous active chromatographic fractions as determined by an antibacterial assay, and one peptide was partially purified. The peptide corresponded to one of the low-abundance cDNAs. This study provides evidence of β-defensin expression in enteric tissue and that the mRNA encoding a major β-defensin of enteric tissue, EBD, is inducibly expressed in enteric epithelial cells. These findings support the proposal that β-defensins may contribute to host defense of enteric mucosa.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3