Molecular Validation of LpxC as an Antibacterial Drug Target in Pseudomonas aeruginosa

Author:

Mdluli Khisimuzi E.1,Witte Pamela R.1,Kline Toni2,Barb Adam W.3,Erwin Alice L.1,Mansfield Bryce E.1,McClerren Amanda L.3,Pirrung Michael C.4,Tumey L. Nathan3,Warrener Paul1,Raetz Christian R. H.3,Stover C. Kendall1

Affiliation:

1. Departments of Research Biology

2. Chemistry, Chiron Corporation, 201 Elliott Avenue West, Suite 150, Seattle, Washington 98119

3. Departments of Biochemistry

4. Chemistry, Duke University Medical Center, Durham, North Carolina 27710

Abstract

ABSTRACT LpxC [UDP-3- O- ( R -3-hydroxymyristoyl)-GlcNAc deacetylase] is a metalloamidase that catalyzes the first committed step in the biosynthesis of the lipid A component of lipopolysaccharide. A previous study (H. R. Onishi, B. A. Pelak, L. S. Gerckens, L. L. Silver, F. M. Kahan, M. H. Chen, A. A. Patchett, S. M. Galloway, S. A. Hyland, M. S. Anderson, and C. R. H. Raetz, Science 274:980-982, 1996) identified a series of synthetic LpxC-inhibitory molecules that were bactericidal for Escherichia coli . These molecules did not inhibit the growth of Pseudomonas aeruginosa and were therefore not developed further as antibacterial drugs. The inactivity of the LpxC inhibitors for P. aeruginosa raised the possibility that LpxC activity might not be essential for all gram-negative bacteria. By placing the lpxC gene of P. aeruginosa under tight control of an arabinose-inducible promoter, we demonstrated the essentiality of LpxC activity for P. aeruginosa . It was found that compound L-161,240, the most potent inhibitor from the previous study, was active against a P. aeruginosa construct in which the endogenous lpxC gene was inactivated and in which LpxC activity was supplied by the lpxC gene from E. coli . Conversely, an E. coli construct in which growth was dependent on the P. aeruginosa lpxC gene was resistant to the compound. The differential activities of L-161,240 against the two bacterial species are thus the result primarily of greater potency toward the E. coli enzyme rather than of differences in the intrinsic resistance of the bacteria toward antibacterial compounds due to permeability or efflux. These data validate P. aeruginosa LpxC as a target for novel antibiotic drugs and should help direct the design of inhibitors against clinically important gram-negative bacteria.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3