Selectively Receptor-Blind Measles Viruses: Identification of Residues Necessary for SLAM- or CD46-Induced Fusion and Their Localization on a New Hemagglutinin Structural Model

Author:

Vongpunsawad Sompong1,Oezgun Numan2,Braun Werner2,Cattaneo Roberto1

Affiliation:

1. Molecular Medicine Program, Mayo Clinic, and Virology and Gene Therapy, Mayo Graduate School, Rochester, Minnesota 55095

2. Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555

Abstract

ABSTRACT Measles virus (MV) enters cells either through the signaling lymphocyte activation molecule SLAM (CD150) expressed only in immune cells or through the ubiquitously expressed regulator of complement activation, CD46. To identify residues on the attachment protein hemagglutinin (H) essential for fusion support through either receptor, we devised a strategy based on analysis of morbillivirus H-protein sequences, iterative cycles of mutant protein production followed by receptor-based functional assays, and a novel MV H three-dimensional model. This model uses the Newcastle disease virus hemagglutinin-neuraminidase protein structure as a template. We identified seven amino acids important for SLAM- and nine for CD46 (Vero cell receptor)-induced fusion. The MV H three-dimensional model suggests (i) that SLAM- and CD46-relevant residues are located in contiguous areas in propeller β-sheets 5 and 4, respectively; (ii) that two clusters of SLAM-relevant residues exist and that they are accessible for receptor contact; and (iii) that several CD46-relevant amino acids may be shielded from direct receptor contacts. It appears likely that certain residues support receptor-specific H-protein conformational changes. To verify the importance of the H residues identified with the cell-cell fusion assays for virus entry into cells, we transferred the relevant mutations into genomic MV cDNAs. Indeed, we were able to recover recombinant viruses, and we showed that these replicate selectively in cells expressing SLAM or CD46. Selectively receptor-blind viruses will be used to study MV pathogenesis and may have applications for the production of novel vaccines and therapeutics.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3