Transduction Profiles of Recombinant Adeno-Associated Virus Vectors Derived from Serotypes 2 and 5 in the Nigrostriatal System of Rats

Author:

Paterna Jean-Charles1,Feldon Joram2,Büeler Hansruedi1

Affiliation:

1. Institute of Molecular Biology, University of Zurich, 8057 Zurich

2. Laboratory of Behavioural Neurobiology, ETH Zurich, 8603 Schwerzenbach, Switzerland

Abstract

ABSTRACT We compared the transduction efficiencies and tropisms of titer-matched recombinant adeno-associated viruses (rAAV) derived from serotypes 2 and 5 (rAAV-2 and rAAV-5, respectively) within the rat nigrostriatal system. The two serotypes (expressing enhanced green fluorescent protein [EGFP]) were delivered by stereotaxic surgery into the same animals but different hemispheres of the striatum (STR), the substantia nigra (SN), or the medial forebrain bundle (MFB). While both serotypes transduced neurons effectively within the STR, rAAV-5 resulted in a much larger EGFP-expressing area than did rAAV-2. However, neurons transduced with rAAV-2 vectors expressed higher levels of EGFP. Consistent with this result, EGFP-positive projections emanating from transduced striatal neurons covered a larger area of the SN pars reticulata (SNr) after striatal delivery of rAAV-5, but EGFP levels in fibers of the SNr were higher after striatal injection of rAAV-2. We also compared the potentials of the two vectors for retrograde transduction and found that striatal delivery of rAAV-5 resulted in significantly more transduced dopaminergic cell bodies within the SN pars compacta and ventral tegmental area. Similarly, EGFP-transduced striatal neurons were detected only after nigral delivery of rAAV-5. Furthermore, we demonstrate that after striatal AAV-5 vector delivery, the transduction profiles were stable for as long as 9 months. Finally, although we did not target the hippocampus directly, efficient and widespread transduction of hippocampal neurons was observed after delivery of rAAV-5, but not rAAV-2, into the MFB.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3