Interspecific Recombination between Two Ruminant Alphaherpesviruses, Bovine Herpesviruses 1 and 5

Author:

Meurens François1,Keil Günther M.2,Muylkens Benoît1,Gogev Sacha1,Schynts Frédéric3,Negro Sandra1,Wiggers Laetitia1,Thiry Etienne1

Affiliation:

1. Department of Infectious and Parasitic Diseases, Virology, and Immunology, Faculty of Veterinary Medicine, University of Liège, Liège

2. Federal Research Centre for Virus Diseases of Animals, Institute of Molecular Biology, Friedrich-Loeffler Institutes, Greifswald-Insel Riems, Germany

3. Division of Animal Virology, CER, Marloie, Belgium

Abstract

ABSTRACT Homologous recombination between different species of alphaherpesviruses has been described between herpes simplex viruses 1 and 2 but has not yet been observed between other alphaherpesviruses. In the present study we chose to assess to what extent in vitro recombination can occur between members of a well-defined group of closely related viruses such as ruminant alphaherpesviruses. At 24 h after infection of epithelial bovine kidney cells with a double-deleted mutant of bovine herpesvirus 1 (BoHV-1) (containing green fluorescent protein and red fluorescent protein genes) and different ruminant alphaherpesviruses, four types of progeny viruses were detected and distinguished according to their phenotype. Frequent recombination events between identical or different strains of BoHV-1 were observed (up to 30%), whereas only two BoHV-1/BoHV-5 recombinants were identified, and no recombinants between BoHV-1 and less closely related caprine and cervine herpesviruses were detected. Restriction analysis of the genomes of the two BoHV-1/BoHV-5 recombinants showed different genetic backgrounds. One possessed a restriction pattern close to BoHV-1, whereas the other one was close to BoHV-5. This exhaustive analysis of each combination of coinfection in a unique situation of five closely related alphaherpesviruses revealed the importance of a high degree of genetic relatedness and similar parental virus growth kinetics for successful interspecific recombination.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3