The Drosophila Gene for Antizyme Requires Ribosomal Frameshifting for Expression and Contains an Intronic Gene for snRNP Sm D3 on the Opposite Strand

Author:

Ivanov Ivaylo P.1,Simin Karl1,Letsou Anthea1,Atkins John F.1,Gesteland Raymond F.12

Affiliation:

1. Department of Human Genetics 1 and

2. Howard Hughes Medical Institute, 2 University of Utah, Salt Lake City, Utah 84112

Abstract

ABSTRACT Previously, a Drosophila melanogaster sequence with high homology to the sequence for mammalian antizyme (ornithine decarboxylase antizyme) was reported. The present study shows that homology of this coding sequence to its mammalian antizyme counterpart also extends to a 5′ open reading frame (ORF) which encodes the amino-terminal part of antizyme and overlaps the +1 frame (ORF2) that encodes the carboxy-terminal three-quarters of the protein. Ribosomes shift frame from the 5′ ORF to ORF2 with an efficiency regulated by polyamines. At least in mammals, this is part of an autoregulatory circuit. The shift site and 23 of 25 of the flanking nucleotides which are likely important for efficient frameshifting are identical to their mammalian homologs. In the reverse orientation, within one of the introns of the Drosophila antizyme gene, the gene for snRNP Sm D3 is located. Previously, it was shown that two closely linked P-element transposon insertions caused the gutfeeling phenotype of embryonic lethality and aberrant neuronal and muscle cell differentiation. The present work shows that defects in either snRNP Sm D3 or antizyme, or both, are likely causes of the phenotype.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference37 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3