Affiliation:
1. Wellcome Unit of Molecular Parasitology, The Anderson College, University of Glasgow, Glasgow G11 6NU, Scotland, United Kingdom
Abstract
ABSTRACT
African trypanosomes evade the mammalian host immune response by antigenic variation, the continual switching of their variant surface glycoprotein (VSG) coat. VSG is first expressed at the metacyclic stage in the tsetse fly as a preadaptation to life in the mammalian bloodstream. In the metacyclic stage, a specific subset (<28; 1 to 2%) of VSG genes, located at the telomeres of the largest trypanosome chromosomes, are activated by a system very different from that used for bloodstream VSG genes. Previously we showed that a metacyclic VSG (M-VSG) gene promoter was subject to life cycle stage-specific control of transcription initiation, a situation unique in Kinetoplastida, where all other genes are regulated, at least partly, posttranscriptionally (S. V. Graham and J. D. Barry, Mol. Cell. Biol. 15:5945–5956, 1985). However, while nuclear run-on analysis had shown that the ILTat 1.22 M-VSG gene promoter was transcriptionally silent in bloodstream trypanosomes, it was highly active when tested in bloodstream-form transient transfection. Reasoning that chromosomal context may contribute to repression of M-VSG gene expression, here we have integrated the 1.22 promoter, linked to a chloramphenicol acetyltransferase (CAT) reporter gene, back into its endogenous telomere or into a chromosomal internal position, the nontranscribed spacer region of ribosomal DNA, in both bloodstream and procyclic trypanosomes. Northern blot analysis and CAT activity assays show that in the bloodstream, the promoter is transcriptionally inactive at the telomere but highly active at the chromosome-internal position. In contrast, it is inactive in both locations in procyclic trypanosomes. Both promoter sequence and chromosomal location are implicated in life cycle stage-specific transcriptional regulation of M-VSG gene expression.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献