Phenotypic Switching of Cryptococcus neoformans Can Produce Variants That Elicit Increased Intracranial Pressure in a Rat Model of Cryptococcal Meningoencephalitis

Author:

Fries B. C.1,Lee S. C.2,Kennan R.1,Zhao W.3,Casadevall A.14,Goldman D. L.5

Affiliation:

1. Departments of Medicine

2. Pathology

3. Urology

4. Microbiology and Immunology

5. Pediatrics, Albert Einstein College of Medicine, Bronx, New York

Abstract

ABSTRACT Increased intracranial pressure (ICP) plays an important role in the morbidity and mortality of cryptococcal meningoencephalitis. The microbial and host factors that contribute to the development of increased ICP are poorly understood. We found that phenotypic switch variants of Cryptococcus neoformans (smooth and mucoid) differed in their abilities to promote increased ICP in a rat model of cryptococcal meningitis. Rats infected with the mucoid variant developed increased ICP, whereas rats infected with the smooth parent did not. This trend correlated with a shorter survival time and a higher cerebrospinal fluid (CSF) fungal burden for mucoid variant-infected rats, although brain fungal burdens were comparable between mucoid variant- and smooth parent-infected rats. Magnetic resonance imaging revealed enhanced T2 signal intensity over the surfaces of the brains of mucoid variant-infected rats. In addition, more polysaccharide accumulated in the CSF and brains of mucoid variant-infected rats. The accumulation of glucorunoxylomannan was associated with elevated levels of MCP-1 (CCL2) and, accordingly, a more pronounced but ineffective monocytic inflammatory response in the meninges of mucoid variant-infected rats. In summary, these findings suggest that strain-specific characteristics can influence the development of increased ICP and indicate a manner in which phenotypic switching could influence the outcome of a central nervous system infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3