Separation of requirements for protein-DNA complex assembly from those for functional activity in the herpes simplex virus regulatory protein Vmw65

Author:

Greaves R1,O'Hare P1

Affiliation:

1. Marie Curie Research Institute, Surrey, United Kingdom.

Abstract

A transient expression system was developed which results in efficient synthesis of the regulatory protein Vmw65 of herpes simplex virus type 1 in eucaryotic cells. The gene for Vmw65 was linked to the cytomegalovirus immediate-early (IE) promoter-enhancer region in a plasmid containing the simian virus 40 origin of replication. When transfected into COS cells, Vmw65 was expressed from this vector in 25 to 50% of the cells, with total levels of the protein approaching 20% of those observed in infected cells. Vmw65 expressed in this system is functional for specific DNA-binding complex formation with the host cell octamer-binding protein TRF and for transactivation of IE gene expression. We therefore produced a series of carboxy-terminal truncated forms of Vmw65 to examine the structural requirements of the protein for these activities. Deletion of the acidic carboxy-terminal 56 amino acids had no effect on DNA-binding complex formation but completely abolished the ability to transactivate. Amino acids between residues 434 and 453, a region which exhibits a high negative charge, were critical for IE transactivation. In contrast, the requirements for complex formation are located entirely within the N-terminal 403 amino acids, and our results indicate a requirement for this activity for residues between 316 and 403. Together with our previous work, the results presented here indicate that recruitment of TRF into a specific DNA-binding complex on IE consensus signals is required but not sufficient for functional IE transactivation by Vmw65.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3