Aminoglycoside Nephrotoxicity: Modeling, Simulation, and Control

Author:

Rougier Florent1,Claude Daniel2,Maurin Michel3,Sedoglavic Alexandre4,Ducher Michel1,Corvaisier Stéphane1,Jelliffe Roger5,Maire Pascal15

Affiliation:

1. UMR CNRS 5558-ADCAPT, Service Pharmaceutique, Hôpital Antoine Charial, Hospices Civils de Lyon, Francheville

2. Université Paris-Sud, Laboratoire des Signaux et Systèmes (CNRS-SUPELEC), Gif-sur-Yvette

3. INRETS, Bron

4. Laboratoire GAGE, Ecole Polytechnique, Palaiseau, France

5. Laboratory of Applied Pharmacokinetics, University of Southern California School of Medicine, Los Angeles California 90033

Abstract

ABSTRACT The main constraints on the administration of aminoglycosides are the risks of nephrotoxicity and ototoxicity, which can lead to acute, renal, vestibular, and auditory toxicities. In the present study we focused on nephrotoxicity. No reliable predictor of nephrotoxicity has been found to date. We have developed a deterministic model which describes the pharmacokinetic behavior of aminoglycosides (with a two-compartment model), the kinetics of aminoglycoside accumulation in the renal cortex, the effects of aminoglycosides on renal cells, the resulting effects on renal function by tubuloglomerular feedback, and the resulting effects on serum creatinine concentrations. The pharmacokinetic parameter values were estimated by use of the NPEM program. The estimated pharmacodynamic parameter values were obtained after minimization of the least-squares objective function between the measured and the calculated serum creatinine concentrations. A simulation program assessed the influences of the dosage regimens on the occurrence of nephrotoxicity. We have also demonstrated the relevancy of modeling of the circadian rhythm of the renal function. We have shown the ability of the model to fit with 49 observed serum creatinine concentrations for a group of eight patients treated for endocarditis by comparison with 49 calculated serum creatinine concentrations ( r 2 = 0.988; P < 0.001). We have found that for the same daily dose, the nephrotoxicity observed with a thrice-daily administration schedule appears more rapidly, induces a greater decrease in renal function, and is more prolonged than those that occur with less frequent administration schedules (for example, once-daily administration). Moreover, for once-daily administration, we have demonstrated that the time of day of administration can influence the incidence of aminoglycoside nephrotoxicity. The lowest level of nephrotoxicity was observed when aminoglycosides were administered at 1:30 p.m. Clinical application of this model might make it possible to adjust aminoglycoside dosage regimens by taking into account both the efficacies and toxicities of the drugs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3