The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles

Author:

Kinchington P R1,Hougland J K1,Arvin A M1,Ruyechan W T1,Hay J1

Affiliation:

1. Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-0499.

Abstract

Varicella-zoster virus (VZV) open reading frame (ORF) 62 potentially encodes a protein with considerable amino acid homology to the herpes simplex virus (HSV) immediate-early regulatory polypeptide ICP4 (or IE3). To identify and characterize its protein product(s) (IE62), we used a rabbit antiserum prepared against a synthetic peptide corresponding to the C-terminal 13 amino acids of the predicted protein. This antiserum reacted with phosphorylated polypeptides of 175 to 180 kDa that were made in VZV-infected cells and in cells infected with a vaccinia virus recombinant expressing IE62, but not in control-infected cells, confirming its specificity and reactivity to the IE62 protein. The antiserum recognized a 175-kDa polypeptide in purified virions that comigrated with a major structural protein. Comparison of this reactivity with that of an antipeptide antiserum directed against the VZV ORF 10 product (homologous to the HSV major structural protein VP16) indicates similar levels of ORF 62 and ORF 10 polypeptides in VZV virions. In contrast, antipeptide antiserum directed against the VZV ORF 29 product, the homolog of the HSV major DNA-binding protein, failed to recognize any protein in our virion preparations. Treatment of virions with detergents that disrupt the virion envelope did not dissociate IE62 from the nucleocapsid-tegument structure of the virion. Differential sensitivity of VZV virion IE62 to trypsin digestion in the presence or absence of Triton X-100 indicates that IE62 is protected from trypsin degradation by the virus envelope; since it is not a nucleocapsid protein, we conclude that it is part of the tegument. Finally, we show that the virion 175-kDa protein either can autophosphorylate or is a major substrate in vitro for virion-associated protein kinase activity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3