The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity

Author:

Schödel F1,Moriarty A M1,Peterson D L1,Zheng J A1,Hughes J L1,Will H1,Leturcq D J1,McGee J S1,Milich D R1

Affiliation:

1. Max-Planck-Institut für Biochemie, Martinsried, Germany.

Abstract

The nucleocapsid (HBcAg) of the hepatitis B virus (HBV) has been suggested as a carrier moiety for vaccine purposes. We investigated the influence of the position of the inserted epitope within hybrid HBcAg particles on antigenicity and immunogenicity. For this purpose, genes coding for neutralizing epitopes of the pre-S region of the HBV envelope proteins were inserted at the amino terminus, the amino terminus through a precore linker sequence, the truncated carboxy terminus, or an internal site of HBcAg by genetic engineering and were expressed in Escherichia coli. All purified hybrid HBc/pre-S polyproteins were particulate. Amino- and carboxy-terminal-modified hybrid HBc particles retained HBcAg antigenicity and immunogenicity. In contrast, insertion of a pre-S(1) sequence between HBcAg residues 75 and 83 abrogated recognition of HBcAg by 5 of 6 anti-HBc monoclonal antibodies and diminished recognition by human polyclonal anti-HBc. Predictably, HBcAg-specific immunogenicity was also reduced. With respect to the inserted epitopes, a pre-S(1) epitope linked to the amino terminus of HBcAg was not surface accessible and not immunogenic. A pre-S(1) epitope fused to the amino terminus through a precore linker sequence was surface accessible and highly immunogenic. A carboxy-terminal-fused pre-S(2) sequence was also surface accessible but weakly immunogenic. Insertion of a pre-S(1) epitope at the internal site resulted in the most efficient anti-pre-S(1) antibody response. Furthermore, immunization with hybrid HBc/pre-S particles exclusively primed T-helper cells specific for HBcAg and not the inserted epitope. These results indicate that the position of the inserted B-cell epitope within HBcAg is critical to its immunogenicity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3