Hantaan virus infection of human endothelial cells

Author:

Pensiero M N1,Sharefkin J B1,Dieffenbach C W1,Hay J1

Affiliation:

1. Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799.

Abstract

The primary pathophysiologic finding of the viral disease known as Korean hemorrhagic fever, the etiological agent of which is Hantaan virus (HTV), is vascular instability. To investigate whether HTV was able to infect cells derived from human vascular tissue and alter their behavior, we infected in vitro primary adult human endothelial cells from saphenous veins (HSVEC). We were able to detect the presence of viral antigens in infected cells both by immunofluorescence and by Western blot (immunoblot) analysis as early as day 1 postinfection. HSVEC infected with HTV produce infectious virus during the first 3 days of infection but, at later times (days 4 to 8), show decreasing yields of virus. This contrasts with the HTV growth pattern observed for the permissive simian CV-7 cell line, which generates infectious virus up to day 12 after infection. Further investigation showed that the late decrease in viral production in HSVEC is the result of the induction of beta interferon and can be reversed by the addition of anti-beta interferon serum to the culture medium. At no time during the course of infection of HSVEC with HTV was any obvious cytopathic effect observed. When tests for changes in mRNA levels of other cytokines and endothelial cell gene products following HTV infection of HSVEC were done by reverse transcription and polymerase chain reaction methods, no significant changes were observed in the levels of interleukin 1, interleukin 6, or von Willebrand factor mRNA. We hypothesize that, while HTV can replicate in human vascular endothelial cells, the mechanism of microvascular damage seen with Korean hemorrhagic fever is not likely to be a direct effect of virus replication but may conceivably be the consequence of an immune-mediated endothelial injury triggered by viral infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3