Human cytomegalovirus US3 and UL36-38 immediate-early proteins regulate gene expression

Author:

Colberg-Poley A M1,Santomenna L D1,Harlow P P1,Benfield P A1,Tenney D J1

Affiliation:

1. Du Pont Merck Pharmaceutical Co., Wilmington, Delaware 19880-0328.

Abstract

We have established the ability of the human cytomegalovirus (HCMV) UL36-38 and US3 immediate-early (IE) gene products to alter gene expression in human cells by using transient transfection assays. The cellular heat shock protein 70 (hsp70) promoter was transactivated following cotransfection with the HCMV IE regions in nonpermissive HeLa cells by UL36-38, US3, or IE1 and in permissive human diploid fibroblasts (HFF) by IE1 or IE2. Moreover, hsp70 expression was synergistically increased in HeLa cells cotransfected with US3 and UL36, with US3 and UL37, or with US3 and UL37x1. The synergistic transactivation of hsp70 expression by US3 and UL36-38 was not observed in HFF cells. Synergy was also not observed in HeLa cells between US3 and UL38, an early gene product encoded by the UL36-38 IE locus. Synergistic transactivation of hsp70 expression in HeLa cells required the syntheses of UL36-38 and US3 IE proteins, since nonsense mutants were not functional. hsp70 expression increased with increasing amounts of transfected US3 and UL37 DNA and occurred at the level of stable hsp70-promoted RNA. In contrast to the broad hsp70 response, promoters from the HCMV UL112 early gene and another cellular gene, brain creatine kinase, both responded strongly only to singly transfected IE2 in HeLa cells. Nevertheless, IE2 transactivation of the UL112 promoter was further stimulated by cotransfection of IE1 or of UL36-38 in both HeLa and HFF cells. Thus, different patterns of promoter transactivation and interactions between HCMV IE gene products in transactivation were found in HFF cells and in HeLa cells. These results establish the ability of the HCMV US3 and UL36-38 proteins to alter cellular and viral gene expression and are consistent with involvement of cellular transcription factors in HCMV IE regulation of gene expression.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3