Author:
Kapoor Vikram,Pitkänen Tarja,Ryu Hodon,Elk Michael,Wendell David,Santo Domingo Jorge W.
Abstract
ABSTRACTThe identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci,Enterococcus faecalis, andEnterococcus faeciummarkers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specificBacteroidalesmarkers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specificBacteroidalesmarkers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献