Affiliation:
1. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, and Institute of Ecology and Genetics, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark2
Abstract
Recently developed techniques involving opposed, gel-stabilized gradients of O
2
and H
2
S permit cultivation of a marine
Beggiatoa
strain as a chemolithoautotroph which uses gliding motility to precisely track the interface between H
2
S and O
2
. In the current study with microelectrodes, vertical profiles of H
2
, O
2
, and pH were measured in replicate cultures grown for various intervals. After an initial period of exponential biomass increase (doubling time, 11 h), linear growth prevailed throughout much of the time course. This H
2
S-limited growth was followed by a transition to stationary phase when the declining H
2
S flux was sufficient only to supply maintenance energy. During late-exponential and linear growth phases, the
Beggiatoa
sp. consumed a constant 0.6 mol of H
2
S for each 1.0 mol of O
2
, the ratio anticipated for balanced lithoautotrophic growth at the expense of complete oxidation of H
2
S to SO
4
2−
. Over the entire range of conditions studied, this consumption ratio varied by approximately twofold. By measuring the extent to which the presence of the bacterial plate diminished the overlap of O
2
and H
2
S, we demonstrated that oxidation of H
2
S by
Beggiatoa
sp. is approximately 3 orders of magnitude faster than spontaneous chemical oxidation. By integrating sulfide profiles and comparing sulfide consumed with biomass produced, a growth yield of 8.4 g (dry weight) mol
−1
of H
2
S was computed. This is higher than that found for sulfide-grown thiobacilli, indicating very efficient growth of
Beggiatoa
sp. as a chemoautotroph. The methods used here offer a unique opportunity to determine the yield of H
2
S-oxidizing chemolithoautotrophs while avoiding several problems inherent in the use of homogeneous liquid culture. Finally, by monitoring time-dependent formation of H
2
S profiles under anoxic conditions, we demonstrate a method for calculating the molecular diffusion coefficient of soluble substrates in gel-stabilized media.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
199 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献