Epstein-Barr Virus Episome Stability Is Coupled to a Delay in Replication Timing

Author:

Zhou Jing1,Snyder Andrew R.1,Lieberman Paul M.1

Affiliation:

1. The Wistar Institute, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT The temporal regulation of DNA replication is thought to be important for chromosome organization and genome stability. We show here that Epstein-Barr virus (EBV) genomes replicate in mid- to late S phase and that agents that accelerate replication timing of EBV reduce viral genome stability. Hydroxyurea (HU) treatment, which is known to eliminate EBV episomes, shifted EBV replication to earlier times in the cell cycle. HU treatment correlated with hyperacetylation of histone H3 and loss of telomere repeat factor 2 (TRF2) binding at the EBV origin of plasmid replication ( OriP ). Deletion of TRF2 binding sites within OriP or short hairpin RNA depletion of TRF2 advanced the replication timing of OriP- containing plasmids. Inhibitors of class I histone deacetylases (HDACs) increased histone acetylation at OriP , advanced the replication timing of EBV, and reduced EBV genome copy number. We also show that HDAC1 and -2 form a stable complex with TRF2 at OriP and that HU treatment inhibits HDAC activity. We propose that the TRF2-HDAC complex enhances EBV episome stability by providing a checkpoint that delays replication initiation at OriP.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3