Affiliation:
1. The Wistar Institute, Philadelphia, Pennsylvania 19104
Abstract
ABSTRACT
The temporal regulation of DNA replication is thought to be important for chromosome organization and genome stability. We show here that Epstein-Barr virus (EBV) genomes replicate in mid- to late S phase and that agents that accelerate replication timing of EBV reduce viral genome stability. Hydroxyurea (HU) treatment, which is known to eliminate EBV episomes, shifted EBV replication to earlier times in the cell cycle. HU treatment correlated with hyperacetylation of histone H3 and loss of telomere repeat factor 2 (TRF2) binding at the EBV origin of plasmid replication (
OriP
). Deletion of TRF2 binding sites within
OriP
or short hairpin RNA depletion of TRF2 advanced the replication timing of
OriP-
containing plasmids. Inhibitors of class I histone deacetylases (HDACs) increased histone acetylation at
OriP
, advanced the replication timing of EBV, and reduced EBV genome copy number. We also show that HDAC1 and -2 form a stable complex with TRF2 at OriP and that HU treatment inhibits HDAC activity. We propose that the TRF2-HDAC complex enhances EBV episome stability by providing a checkpoint that delays replication initiation at OriP.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献