Ultraviolet-sensitive Targets in the Enzyme-synthesizing Apparatus of Escherichia coli

Author:

Pardee Arthur B.1,Prestidge Louise S.1

Affiliation:

1. Biology Department, Princeton University, Princeton, New Jersey

Abstract

Inhibition by ultraviolet light of β-galactosidase and alkaline phosphatase synthesis was investigated in both ultraviolet (UV)-sensitive and UV-resistant (wild-type) Escherichia coli , with the objective of determining the sensitivity of various targets. Kinetics of enzyme formation by unmated bacteria and in mating systems, in which the donor provided the specific genetic material and the recipient the cytoplasm, permit the following conclusions regarding the sensitivity of various targets. Catabolite repression resulting from UV damage causes most of the inhibition of β-galactosidase formation. When it is largely eliminated by a step-down in nutrition, the principal target in UV-sensitive bacteria appears to be the structural gene ( lacZ + ), but damage to the cytoplasm is also important. Transitory inhibition by inactivation of messenger ribonucleic acid is also observed. In wild-type bacteria, repair reduces the importance of lesions in deoxyribonucleic acid sufficiently that cytoplasmic damage appears to be at least as important. Repair occurs within 10 min, as shown by recovery of enzyme-synthesizing ability. Caffeine and proflavine prevent recovery. Newly mated bacteria respond to irradiation very differently than do unmated bacteria. The β-galactosidase or alkaline phosphatase structural gene ( lacZ + or phoP + ) is much more inhibited after it is transferred than it is in unmated bacteria. This sensitivity seems to depend on a sensitive state of the injected material, rather than on a different physiological condition of the entire zygote. Irradiation of recipient uvr + bacteria much more strongly inhibited expression of injected genes than if the F was uvr s . Studies on mating systems are not very useful for learning about the function of unmated bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3