Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium

Author:

Novotny M J,Frederickson W L,Waygood E B,Saier M H

Abstract

The mechanism by which enzyme IIIglc of the bacterial phosphotransferase system regulates the activity of crystalline glycerol kinase from Escherichia coli has been studied, and the inhibitory effects have been compared with those produced by fructose-1,6-diphosphate. It was shown that the free, but not the phosphorylated, form of enzyme IIIglc inhibits the kinase. Mutants of Salmonella typhimurium were isolated which were resistant to inhibition by either enzyme IIIglc (glpKr mutants) or fructose-1,6-diphosphate (glpKi mutants), and each mutant type was shown to retain full sensitivity to inhibition by the other regulatory agent. Other mutants were fully or partially resistant to regulation by both agents. The two regulatory sites on the kinase are evidently distinct but must overlap or interact functionally. Kinetic analyses have revealed several mechanistic features of the regulatory interactions. (i) Inhibition by both allosteric regulatory agents is strongly pH dependent, with maximal inhibition occurring at ca. pH 6.5 under the assay conditions employed. (ii) Binding of enzyme IIIglc to glycerol kinase is also pH dependent, the Ki being near 4 microM at pH 6.0 but near 10 microM at pH 7.0. (iii) Whereas fructose-1,6-diphosphate inhibition apparently requires that the enzyme exist in a tetrameric state, both the dimer and the tetramer appear to be fully sensitive to enzyme IIIglc inhibition. (iv) Inhibition by enzyme IIIglc (like that by fructose-1,6-diphosphate) is noncompetitive with respect to both substrates. (v) The inhibitory responses of glycerol kinase to fructose-1, 6-diphosphate and enzyme IIIglc show features characteristic of positive cooperativity at low inhibitor concentration. (vi) Neither agent inhibits completely at high inhibitor concentration. (vii) Apparent negative cooperativity with respect to ATP binding is observed with purified E. coli glycerol kinase, with glycerol kinase in crude extracts of wild-type S. typhimurium cells, and with glpKr and glpKi mutant forms of glycerol kinase from S. typhimurium. These results serve to characterize the regulatory interactions which control the activity of glycerol kinase by fructose-1,6-diphosphate and by enzyme IIIglc of the phosphotransferase system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3