Isolation and characterization of Tn5 insertion mutants of Erwinia chrysanthemi that are deficient in polygalacturonate catabolic enzymes oligogalacturonate lyase and 3-deoxy-D-glycero-2,5-hexodiulosonate dehydrogenase

Author:

Chatterjee A K,Thurn K K,Tyrell D J

Abstract

Mutants of Erwinia chrysanthemi EC16 deficient in the polygalacturonate catabolic enzymes oligogalacturonate lyase (Ogl-) and 3-deoxy-D-glycero-2,5-hexodiulosonate (ketodeoxyuronate) dehydrogenase (KduD-) were obtained by Tn5 mutagenesis using the R plasmid pJB4JI. Ogl- Exu+ (Exu+, D-galacturonate utilization) and KduD- Exu- strains macerated potato tuber tissue and utilized glucose, glycerol, and gluconate, but they did not utilize polygalacturonate, unsaturated digalacturonate, or saturated digalacturonate. Genetic and physical evidence indicated that the Ogl- mutants and a KduD- recombinant contained a single copy of Tn5 and that Tn5 (Kmr) was linked to the mutant phenotypes. In the Ogl+ parents, basal levels of oligogalacturonate lyase were present in glycerol-grown cells and induced levels were present with saturated or unsaturated digalacturonate, while oligogalacturonate lyase was undetectable under similar conditions in Ogl- strains. Pectate lyase, polygalacturonase, and ketodeoxyuronate dehydrogenase were induced in an Ogl- strain by 3-deoxy-D-glycero-2,5-hexodiulosonate and by the enzymatic products of unsaturated digalacturonate but not by the digalacturonates. The KduD- strains lacked the dehydrogenase activity but in the presence of the digalacturonates produced higher levels of pectate lyase, polygalacturonase, and oligogalacturonate lyase than the KduD+ parents did. In the KduD- strains, pectate lyase and oligogalacturonate lyase were induced by unsaturated digalacturonate in a "gratuitous" manner, suggesting an intracellular accumulation of the inducer(s). We conclude that an intermediate(s) of the ketodeoxyuronate pathway induces pectate lyase, polygalacturonase, oligogalacturonate lyase, and ketodeoxyuronate dehydrogenase in E. chrysanthemi.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference47 articles.

1. Relationship of cell death in plant tissue treated with a homogeneous endopectate lyase to cell wall degradation;Basham H. G.;Physiol. Plant Pathol.,1975

2. Construction of hybrid plasmids containing the Escherichia coli uxaB gene: analysis of its regulation and direction of transcription;Blanco C.;J. Bacteriol.,1983

3. Acceptance by Erwinia spp. of R plasmid R68.45 and its ability to mobilize the chromosome of Erwinia chrysanthemi;Chatterjee A. K.;J. Bacteriol.,1980

4. Chatterjee A. K. M. A. Brown J. S. Ziegle and K. K. Thurn. 1981. Progress in chromosomal genetics of Erwinia chrysanthemi p. 389-402. In J. C. Lozano (ed.) Proceedings of the Fifth International Conference on Plant Pathogenic Bacteria Cali Colombia 1981. Centro Internacional de Agricultura Tropical Cali Colombia.

5. Donor strains of the soft-rot bacterium Erwinia chrysanthemi and conjugational transfer of the pectolytic capacity;Chatterjee A. K.;J. Bacteriol.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3