Author:
Kohler-Staub D,Leisinger T
Abstract
Dichloromethane dehalogenase, a highly inducible glutathione-dependent enzyme catalyzing the conversion of dichloromethane into formaldehyde and inorganic chloride, was purified fivefold with 60% yield from Hyphomicrobium sp. strain DM2. The electrophoretically homogeneous purified enzyme exhibited a specific activity of 17.3 mkat/kg of protein. Its pH optimum was 8.5. The enzyme was stable at -20 degrees C for at least 6 months. A subunit molecular weight of 33,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration of native dichloromethane dehalogenase yielded a molecular weight of 195,000. Subunit cross-linking with dimethyl suberimidate confirmed the hexameric tertiary structure of the enzyme. Dichloromethane dehalogenase was highly specific for dihalomethanes. Its apparent Km values were 30 microM for CH2Cl2, 15 microM for CH2BrCl, 13 microM for CH2Br2, 5 microM for CH2I2, and 320 microM for glutathione. Several chlorinated aliphatic compounds inhibited the dichloromethane dehalogenase activity of the pure enzyme. The Ki values of the competitive inhibitors 1,2-dichloroethane and 1-chloropropane were 3 and 56 microM, respectively.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献