Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein

Author:

Fennewald S,van Santen V,Kieff E

Abstract

The most abundant Epstein-Barr virus mRNA in a latently infected cell line, IB4, established by in vitro growth transformation with virus, was a 2,8-kilobase RNA encoded by largely unique DNA near the right end of the genome. The RNA was transcribed from right to left, and two introns were spliced out. This region of the genome was sequenced, and the exons of the RNA were identified by S1 analysis of DNA-RNA hybrids and primer extension. The first start codon in the RNA was 40 nucleotides from its 5' end. Beginning with the start codon, there was a 1,158-nucleotide open reading frame which crossed both introns. The important characteristics of the translated protein were as follows. (i) The amino terminus was highly charged and not suggestive of a leader sequence. (ii) There were six markedly hydrophobic alpha-helical domains, each having 21 amino acids and connected by 5 to 7 amino acid segments predicted to be reverse turns. (iii) The carboxy-terminal 200 amino acids were markedly acidic, containing 6 glutamic and 37 aspartic acids. The hydrophobic region is predicted to form six membrane-spanning regions, leaving the short charged amino terminus and long acidic carboxy terminus on the inside of the membrane. This protein could be responsible for the new antigen detected in the plasma membrane of Epstein-Barr virus-transformed cells, lymphocyte-determined membrane antigen. There were two other open reading frames in the RNA.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 273 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3