Properties of the imidazolylacetolphosphate aminotransferase produced in a mutant demonstrating no apparent genetic involvement of the structural gene

Author:

Roberts J H,McCarroll D R,Levin A P

Abstract

Genetic studies with strain hisBH22 of Salmonella typhimurium indicate it contains a deletion within the histidine operon involving part of the hisH gene and all of the hisB gene, but not extending into the adjacent hisC gene which is adjacent to hisB. However, the specific activity of the hisC product, imidazolylacetolphosphate aminotransferase (EC 2.6.1.9), in this strain is only 10 to 15% of that found in extracts from other mutants with a normal hisC gene. We have examined the rate of aminotransferase synthesis in this mutant and we find that the rate of synthesis of aminotransferase activity is low in mutant hisBH22, but the rate increases as the temperature of growth is lowered from 37 to 23 C. The low rate of enzyme accumulation is not due to holoenzyme instability at 37 C but instead is due to apoenzyme instability at this temperature. By transducing the hisBH22 marker into a pyridoxine auxotroph and derepressing the histidine operon under conditions where the intracellular concentration of pyridoxal phosphate would be expected to be low, we were able to demonstrate significant apoenzyme production only at the lower temperature. We suggest that the explanation for low aminotransferase specific activity at 37 C is due to the presence of reduced numbers of catalytically active units caused by normal production of an unstable mutant apoenzyme with only approximately 15% of the molecules being activated to holoenzyme. The holoenzyme from strain hisBH22 is stable during growth of this strain at 37 C.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3