Affiliation:
1. MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, England
Abstract
ABSTRACT
The human immunodeficiency virus type 1 (HIV-1) Tat protein activates transcription elongation by stimulating the Tat-activated kinase (TAK/p-TEFb), a protein kinase composed of CDK9 and its cyclin partner, cyclin T1. CDK9 is able to hyperphosphorylate the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase during elongation. In addition to TAK, the transcription elongation factor Spt5 is required for the efficient activation of transcriptional elongation by Tat. To study the role of Spt5 in HIV transcription in more detail, we have developed a three-stage Tat-dependent transcription assay that permits the isolation of active preinitiation complexes, early-stage elongation complexes, and Tat-activated elongation complexes. Spt5 is recruited in the transcription complex shortly after initiation. After recruitment of Tat during elongation through the transactivation response element RNA, CDK9 is activated and induces hyperphosphorylation of Spt5 in parallel to the hyperphosphorylation of the CTD of RNA polymerase II. However, immunodepletion experiments demonstrate that Spt5 is not required for Tat-dependent activation of the kinase. Chase experiments using the Spt5-depleted extracts demonstrate that Spt5 is not required for early elongation. However, Spt5 plays an important role in late elongation by preventing the premature dissociation of RNA from the transcription complex at terminator sequences and reducing the amount of polymerase pausing at arrest sites, including bent DNA sequences. This novel biochemical function of Spt5 is analogous to the function of NusG, an elongation factor found in
Escherichia coli
that enhances RNA polymerase stability on templates and shows sequence similarity to Spt5.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference69 articles.
1. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone
2. Andrulis, E. D., E. Guzmán, P. Döring, J. Werner, and J. T. Lis. 2000. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev.14:2635-2649.
3. Artsimovitch, I., and R. Landick. 2001. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. USA97:7090-7095.
4. Awrey, D. E., R. G. Weilbaecher, S. A. Hemming, S. M. Orlicky, C. M. Kane, and A. M. Edwards. 1997. Transcription elongation through DNA arrest sites: a multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J. Biol. Chem.272:14747-14754.
5. Berkhout, B., R. H. Silverman, and K.-T. Jeang. 1989. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell59:273-282.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献