Affiliation:
1. Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Abstract
The human immunodeficiency virus type 1 matrix protein (p17MA) plays a central role at both the early and late stages of the virus life cycle. During viral assembly, the p17MA domain of Pr55gag promotes membrane association, which is essential for the formation of viral particles. When viral infection occurs, the mature p17MA dissociates from the plasma membrane and participates in the nuclear targeting process. Thus, p17MA contains a reversible membrane binding signal to govern its differential subcellular localization and biological functions. We previously identified a membrane binding signal within the amino-terminal 31 amino acids of the matrix domain of human immunodeficiency virus type 1 Gag, consisting of myristate and a highly basic region (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). Here we show that exposure of this membrane binding signal is regulated in different Gag protein contexts. Within full-length Pr55gag, the membrane targeting signal is exposed and can direct Pr55gag as well as heterologous proteins to the plasma membrane. However, in the context of p17MA alone, this signal is hidden and unable to confer plasma membrane binding. To investigate the molecular mechanism for regulation of membrane binding, a series of deletions within p17MA was generated by sequentially removing alpha-helical regions defined by the nuclear magnetic resonance structure. Removal of the last alpha helix (amino acids 97 to 109) of p17MA was associated with enhancement of binding to biological membranes in vitro and in vivo. Liposome binding experiments indicated that the C-terminal region of p17MA exerts a negative effect on the N-terminal MA membrane targeting domain by sequestering the myristate signal. We propose that mature p17MA adopts a conformation different from that of the p17MA domain within Pr55gag and present evidence to support this hypothesis. It is likely that such a conformational change results in an N-terminal myristyl switch which governs differential membrane binding.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
201 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献