Affiliation:
1. Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0720, USA.
Abstract
Preceding and following each gene of respiratory syncytial virus (RSV) are two conserved sequences, the gene-start (GS) and gene-end (GE) motifs, respectively, which are thought to be transcription signals. The functions and boundaries of these signals and the process of sequential transcription were analyzed with cDNA-encoded RNA analogs (minigenomes) of nonsegmented negative-sense RSV genomic RNA. Two minigenomes were used. The monocistronic RSV-CAT minigenome consists of the chloramphenicol acetyltransferase (CAT) translational open reading frame (ORF) bordered by the GS and GE motifs and flanked by the 3' leader and 5' trailer extragenic regions of genomic RNA. The dicistronic RSV-CAT-LUC minigenome is a derivative of RSV-CAT into which the ORF for luciferase (LUC), bordered by GS and GE motifs, was inserted downstream of the CAT gene with an intergenic region positioned between the two genes. Each minigenome was synthesized in vitro and transfected into RSV-infected cells, where it was replicated and transcribed to yield the predicted polyadenylated subgenomic mRNA(s). The only RSV sequences required for efficient transcription and RNA replication were the 44-nucleotide 3' leader region, the last 40 nucleotides of the 5' trailer region, and the 9- to 10-nucleotide GS and 12- to 13-nucleotide GE motifs. The GS and GE motifs functioned as self-contained, transportable transcription signals which could be attached to foreign sequences to direct their transcription into subgenomic mRNAs. Removal of the GS motif greatly reduced transcription of its gene, and the requirement for this element was particularly strict for the gene in the downstream position. Ablation of the promoter-proximal GS signal was not associated with increased antigenome synthesis. Consistent with its proposed role in termination and polyadenylation, removal of the CAT GE signal in RSV-CAT resulted in the synthesis of a nonpolyadenylated CAT mRNA, and in RSV-CAT-LUC the same mutation resulted in readthrough transcription to yield a dicistronic CAT-LUC mRNA. The latter result showed that a downstream GS signal is not recognized for reinitiation by the polymerase if it is already engaged in mRNA synthesis; instead, it is recognized only if the polymerase first terminates transcription at an upstream termination signal. This result also showed that ongoing transcription did not open the downstream LUC gene for internal polymerase entry. Removal of both the GS and GE signals of the upstream CAT gene in RSV-CAT-LUC silenced expression of both genes, confirming that independent polymerase entry at an internal gene is insignificant. Remarkably, whereas both genes were silent when the CAT GS and GE signals were both absent, restoration of the CAT GE signal alone restored a significant level (approximately 10 to 12% of the wild-type level) of synthesis of both subgenomic mRNAs. This analysis identified a component of sequential transcription that was independent of the promoter-proximal GS signal and appeared to involve readthrough from the leader region.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献