Affiliation:
1. Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
Abstract
During maintenance of L-cell cultures persistently infected with reovirus, mutations are selected in viruses and cells. Cells cured of persistent infection support growth of viruses isolated from persistently infected cultures (PI viruses) significantly better than that of wild-type (wt) viruses. In a previous study, the capacity of PI virus strain L/C to grow better than wt strain type 1 Lang (T1L) in cured cells was mapped genetically to the S1 gene (R. S. Kauffman, R. Ahmed, and B. N. Fields, Virology 131:79-87, 1983), which encodes viral attachment protein sigma1. To investigate mechanisms by which mutations in S1 confer growth of PI viruses in cured cells, we determined the S1 gene nucleotide sequences of L/C virus and six additional PI viruses isolated from independent persistently infected L-cell cultures. The S1 sequences of these viruses contained from one to three mutations, and with the exception of PI 2A1 mutations in each S1 gene resulted in changes in the deduced amino acid sequence of sigma1 protein. Using electrophoresis conditions that favor migration of sigma1 oligomers, we found that sigma1 proteins of L/C, PI 1A1, PI 3-1, and PI 5-1 migrated as monomers, whereas sigma1 proteins of wt reovirus and PI 2A1 migrated as oligomers. These findings suggest that mutations in sigma1 protein affecting stability of sigma1 oligomers are important for the capacity of PI viruses to infect mutant cells selected during persistent infection. Since no mutation was found in the deduced amino acid sequence of PI 2A1 sigma1 protein, we used T1L X PI 2A1 reassortant viruses to identify viral genes associated with the capacity of this PI virus to grow better than wt in cured cells. The capacity of PI 2A1 to grow better than T1L in cured cells was mapped to the S4 gene, which encodes outer-capsid protein sigma3. This finding suggests that in some cases, mutations in sigma3 protein in the absence of sigma1 mutations confer growth of PI viruses in mutant cells. To confirm the importance of the S1 gene in PI virus growth in cured cells, we used T1L X PI 3-1 reassortant viruses to genetically map the capacity of this PI virus to grow better than wt in cured cells. In contrast to our results using PI 2A1, we found that growth of PI 3-1 in cured cells was determined by the sigma1-encoding S1 gene. Given that the sigma1 and sigma3 proteins play important roles in reovirus disassembly, findings made in this study suggest that stability of the viral outer capsid is an important determinant of the capacity of reoviruses to adapt to host cells during persistent infection.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献