Surface Downregulation of Major Histocompatibility Complex Class I, PE-CAM, and ICAM-1 following De Novo Infection of Endothelial Cells with Kaposi's Sarcoma-Associated Herpesvirus

Author:

Tomescu Costin12,Law Wai K.12,Kedes Dean H.123

Affiliation:

1. Myles H. Thaler Center for AIDS and Human Retrovirus Research

2. Departments of Microbiology

3. Medicine, University of Virginia, Charlottesville, Virginia 22908

Abstract

ABSTRACT Under selective pressure from host cytotoxic T lymphocytes, many viruses have evolved to downregulate major histocompatibility complex (MHC) class I and/or T-cell costimulatory molecules from the surface of infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two proteins, MIR-1 and MIR-2, that serve this function during lytic replication. In vivo, however, KSHV exists in a predominantly latent state, with less than 5% of infected cells expressing discernible lytic gene products. Thus, mechanisms of immune evasion that depend on genes expressed only during lytic replication are unlikely to be active in most KSHV-infected cells. As a result, we searched for evidence of similar defensive strategies extant during latency, employing culture systems that strongly favor latent KSHV infection. We measured cell surface levels of immunomodulatory proteins on both primary dermal microvascular endothelial cells (pDMVEC) infected through coculture with induced primary effusion lymphoma cells and telomerase-immortalized DMVEC infected directly with cell-free virus. Employing a panel of antibodies against several endothelial cell surface proteins, we show that de novo infection with KSHV leads to the downregulation of MHC class I, CD31 (PE-CAM), and CD54 (ICAM-I) but not CD58 (LFA-3) or CD95 (Fas). Furthermore, flow cytometry with a fluorescently labeled monoclonal antibody to the latency-associated nuclear antigen (LANA) revealed that downregulation occurred predominantly on KSHV-infected (LANA-positive) cells. Although the vast majority of infected cells displayed this downregulation, less than 1% expressed either immediate-early or late lytic proteins detectable by immunofluorescence. Together, these results suggest that downregulation of immunomodulatory proteins on the surface of target cells may represent a constitutive mode of immune evasion employed by KSHV following de novo infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3