Susceptibility of Immature and Mature Langerhans Cell-Type Dendritic Cells to Infection and Immunomodulation by Human Cytomegalovirus

Author:

Hertel Laura1,Lacaille Vashti G.2,Strobl Herbert3,Mellins Elizabeth D.2,Mocarski Edward S.1

Affiliation:

1. Departments of Microbiology and Immunology

2. Pediatrics, Stanford University School of Medicine, Stanford, California 94305

3. Institute of Immunology, University of Vienna, A-1235 Vienna, Austria

Abstract

ABSTRACT Human cytomegalovirus (CMV) infection initiates in mucosal epithelia and disseminates via leukocytes throughout the body. Langerhans cells (LCs), the immature dendritic cells (DCs) that reside in epithelial tissues, are among the first cells to encounter virus and may play important roles in the immune response, as well as in pathogenesis as hosts for viral replication and as vehicles for dissemination. Here, we demonstrate that CD34 + progenitor cell-derived LC-type DCs exhibit a differentiation state-dependent susceptibility to CMV infection. In contrast to the small percentage (3 to 4%) of the immature LCs that supported infection, a high percentage (48 to 74%) of mature, LC-derived DCs were susceptible to infection with endotheliotropic strains (TB40/E or VHL/E) of CMV. These cells were much less susceptible to viral strains AD169 var ATCC, Towne var RIT 3 , and Toledo. When exposed to endotheliotropic strains, viral gene expression (IE1/IE2 and other viral gene products) and viral replication proceeded efficiently in LC-derived mature DCs (mDCs). Productive infection was associated with downmodulation of cell surface CD83, CD1a, CD80, CD86, ICAM-1, major histocompatibility complex (MHC) class I, and MHC class II on these cells. In addition, the T-cell proliferative response to allogeneic LC-derived mDCs was attenuated when CMV-infected cultures were used as stimulators. This investigation revealed important characteristics of the interaction between CMV and the LC lineage of DCs, suggesting that LC-derived mDCs are important to viral pathogenesis and immunity through their increased susceptibility to virus replication and virus-mediated immune escape.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3