Tuberous Sclerosis Complex Protein 2-Independent Activation of mTORC1 by Human Cytomegalovirus pUL38

Author:

Bai Yadan12,Xuan Baoqin2,Liu Haiyan1,Zhong Jin3,Yu Dong4,Qian Zhikang2ORCID

Affiliation:

1. Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China

2. Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Xuhui District, Shanghai, China

3. Unit of Viral Hepatitis, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Xuhui District, Shanghai, China

4. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

Abstract

ABSTRACT The mammalian target of rapamycin complex 1 (mTORC1) controls cell growth and anabolic metabolism and is a critical host factor activated by human cytomegalovirus (HCMV) for successful infection. The multifunctional HCMV protein pUL38 previously has been reported to activate mTORC1 by binding to and antagonizing tuberous sclerosis complex protein 2 (TSC2) (J. N. Moorman et al., Cell Host Microbe 3:253–262, 2008, http://dx.doi.org/10.1016/j.chom.2008.03.002 ). pUL38 also plays a role in blocking endoplasmic reticulum stress-induced cell death during HCMV infection. In this study, we showed that a mutant pUL38 lacking the N-terminal 24 amino acids (pHA-UL38 25–331 ) was fully functional in suppressing cell death during infection. Interestingly, pHA-UL38 25–331 lost the ability to interact with TSC2 but retained the ability to activate mTORC1, although to a lesser extent than full-length pHA-UL38. Recombinant virus expressing pHA-UL38 25–331 replicated with ∼10-fold less efficiency than the wild-type virus at a low multiplicity of infection (MOI), but it grew similarly well at a high MOI, suggesting an MOI-dependent importance of pUL38-TSC2 interaction in supporting virus propagation. Site-directed mutational analysis identified a TQ motif at amino acid residues 23 and 24 as critical for pUL38 interaction with TSC2. Importantly, when expressed in isolation, the TQ/AA substitution mutant pHA-UL38 TQ/AA was capable of activating mTORC1 just like pHA-UL38 25–331 . We also created TSC2-null U373-MG cell lines by CRISPR genome editing and showed that pUL38 was capable of further increasing mTORC1 activity in TSC2-null cells. Therefore, this study identified the residues important for pUL38-TSC2 interaction and demonstrated that pUL38 can activate mTORC1 in both TSC2-dependent and -independent manners. IMPORTANCE HCMV, like other viruses, depends exclusively on its host cell to propagate. Therefore, it has developed methods to protect against host stress responses and to usurp cellular processes to complete its life cycle. mTORC1 is believed to be important for virus replication, and HCMV maintains high mTORC1 activity despite the stressful cellular environment associated with infection. mTORC1 inhibitors suppressed HCMV replication in vitro and reduced the incidence of HCMV reactivation in transplant recipients. We demonstrated that mTORC1 was activated by HCMV protein pUL38 in both TSC2-dependent and TSC2-independent manners. The pUL38-independent mode of mTORC1 activation also has been reported. These novel findings suggest the evolution of sophisticated approaches whereby HCMV activates mTORC1, indicating its importance in the biology and pathogenesis of HCMV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference56 articles.

1. Human cytomegalovirus: Latency and reactivation in the myeloid lineage

2. Latency and reactivation of human cytomegalovirus

3. Mocarski ES Jr, Shenk T, Pass RF. 2007. Cytomegaloviruses, p 2701–2772. In Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed), Fields virology, 5th ed, vol 2. Lippincott Williams & Wilkins, Philadelphia, PA.

4. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway

5. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3