In VitroBiochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus

Author:

Warrilow Andrew G. S.,Parker Josie E.,Price Claire L.,Nes W. David,Kelly Steven L.,Kelly Diane E.

Abstract

ABSTRACTThe incidence of triazole-resistantAspergillusinfections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinantAspergillus fumigatusCPR1 (AfCPR1), andEscherichia colimembrane suspensions containing recombinantA. fumigatusCYP51 proteins, allowingin vitroscreening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed thatA. fumigatusCYP51B (Af51B IC50, 0.50 μM) was 34-fold more susceptible to inhibition by fluconazole thanA. fumigatusCYP51A (Af51A IC50, 17 μM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 μM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 μM triazole, which could confer azole resistance inA. fumigatusstrains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance ofA. fumigatusstrains harboring G54W, L98H, and M220K Af51A point mutations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3