5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides

Author:

Neidle E L1,Kaplan S1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225.

Abstract

In the photosynthetic bacterium Rhodobacter sphaeroides, two genes, hemA and hemT, each encode a distinct 5-aminolevulinic acid (ALA) synthase isozyme (E. L. Neidle and S. Kaplan, J. Bacteriol. 175:2292-2303, 1993). This enzyme catalyzes the first and rate-limiting step in a branched pathway for tetrapyrrole formation, leading to the biosynthesis of hemes, bacteriochlorophylls, and corrinoids. In an attempt to determine the functions of hemA and hemT, mutant strains were constructed with specific chromosomal disruptions. These chromosomal disruption allowed hemA and hemT to be precisely localized on the larger and smaller of two R. sphaeroides chromosomes, respectively. Mutants carrying a single hemA or hemT disruption grew well without the addition of ALA, whereas a mutant, HemAT1, in which hemA and hemT had both been inactivated required exogenous ALA for growth. The growth rates, ALA synthase enzyme levels, and the amounts of bacteriochlorophyll-containing intracytoplasmic membrane spectral complexes of all strains were compared. Under photosynthetic growth conditions, the levels of bacteriochlorophyll, carotenoids, and B800-850 and B875 light-harvesting complexes were significantly lower in the Hem mutants than in the wild type. In the mutant strains, available bacteriochlorophyll appeared to be preferentially targeted to the B875 light-harvesting complex relative to the B800-850 complex. In strain HemAT1, the amount of B800-850 complex varied with the concentration of ALA added to the growth medium, and under conditions of ALA limitation, no B800-850 complexes could be detected. In the Hem mutants, there were aberrant transcript levels corresponding to the puc and puf operons encoding structural polypeptides of the B800-850 and B875 complexes. These results suggest that hemA and hemT expression is coupled to the genetic control of the R. sphaeroides photosynthetic apparatus.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. Distribution of 6-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups;Avissar Y. J.;Arch. Microbiol.,1989

2. BRL pUC host: E. coli DH5(xTM competent cells;Bethesda Research Laboratories;Bethesda Res. Lab. Focus,1986

3. Cloning of the Rhodobacter capsulatus hemA gene;Biel S. W.;J. Bacteriol.,1988

4. b-Aminolevulinic acid synthase (Rhodopseudomonas spheroides);Burnham B. F.;Methods Enzymol.,1970

5. Activation of ALA synthase by reduced thioredoxin in Rhodopseudomonas sphaeroides Y;Clement-Metral J. D.;FEBS Lett.,1979

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3