Transcriptional Switch of the dia1 and impA Promoter during the Growth/Differentiation Transition

Author:

Hirose Shigenori1,Mayanagi Taira2,Pears Catherine3,Amagai Aiko2,Loomis William F.1,Maeda Yasuo2

Affiliation:

1. Cell and Developmental Biology, Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla California 92093-0368

2. Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan

3. Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom

Abstract

ABSTRACT When growth stops due to the depletion of nutrients, Dictyostelium cells rapidly turn off vegetative genes and start to express developmental genes. One of the early developmental genes, dia1 , is adjacent to a vegetative gene, impA , on chromosome 4. An intergenic region of 654 bp separates the coding regions of these divergently transcribed genes. Constructs carrying the intergenic region expressed a reporter gene (green fluorescent protein gene) that replaced impA in growing cells and a reporter gene that replaced dia1 (DsRed) during development. Deletion of a 112-bp region proximal to the transcriptional start site of impA resulted in complete lack of expression of both reporter genes during growth or development. At the other end of the intergenic region there are two copies of a motif that is also found in the carA regulatory region. Removing one copy of this repeat reduced impA expression twofold. Removing the second copy had no further consequences. Removing the central portion of the intergenic region resulted in high levels of expression of dia1 in growing cells, indicating that this region contains a sequence involved in repression during the vegetative stage. Gel shift experiments showed that a nuclear protein present in growing cells recognizes the sequence GAAGTTCTAATTGATTGAAG found in this region. This DNA binding activity is lost within the first 4 h of development. Different nuclear proteins were found to recognize the repeated sequence proximal to dia1 . One of these became prevalent after 4 h of development. Together these regulatory components at least partially account for this aspect of the growth-to-differentiation transition.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3