Ehrlichia Activation of Wnt-PI3K-mTOR Signaling Inhibits Autolysosome Generation and Autophagic Destruction by the Mononuclear Phagocyte

Author:

Lina Taslima T.1,Luo Tian1,Velayutham Thangam-Sudha1,Das Seema1,McBride Jere W.12345ORCID

Affiliation:

1. Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA

2. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA

3. Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA

4. Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA

5. Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA

Abstract

ABSTRACT In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)–Akt–mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism.

Funder

Clayton Foundation for Research

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3