Detection of Chlamydia trachomatis by Isothermal Ramification Amplification Method: a Feasibility Study

Author:

Zhang Wandi1,Cohenford Menashi2,Lentrichia Brian2,Isenberg Henry D.1,Simson Elkin1,Li Hengjin1,Yi Jizu1,Zhang David Y.1

Affiliation:

1. Department of Pathology, Mount Sinai School of Medicine, New York University, New York, New York 10029

2. Cytyc Corporation, Boxborough, Massachusetts 01719

Abstract

ABSTRACT Chlamydia trachomatis is the leading cause of sexually transmitted disease in the United States. Effective screening for this agent can facilitate prompt treatment and prevent its sequelae. The recent introduction of liquid-based cytology has made possible the simultaneous screening of cervical intraepithelial lesions and detection of C. trachomatis in a single collection vial. In this study we determined whether cytological fluid could support DNA-based amplification for the detection of C. trachomatis . Three methods were compared, including ramification amplification (RAM), real-time PCR with molecular beacon, and Abbott’s ligase chain reaction (LCx). RAM is a novel, recently introduced, isothermal DNA amplification technique that utilizes a circular probe for target detection and achieves exponential amplification through the mechanism of primer extension, strand displacement, and ramification. Our results show that RAM can detect as few as 10 C. trachomatis elementary bodies in less than 2 h, comparable to results with real-time PCR. Thirty clinical specimens collected in PreservCyt solution were tested by LCx, real-time PCR, and RAM. Among 30 specimens, 15 were positive by PCR and LCx and 14 were positive by RAM. One specimen missed by RAM had an inadequate amount of residual cellular material. Our results show that nucleic acid amplification methods can serve to detect C. trachomatis and presumably other sexually transmitted agents in cytological fluid and that the RAM assay can be an alternative to PCR and LCx because of its simplicity and isothermal amplification.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3