Differential Effects of Antiretroviral Nucleoside Analogs on Mitochondrial Function in HepG2 Cells

Author:

Pan-Zhou Xin-Ru1,Cui Lixin1,Zhou Xiao-Jian1,Sommadossi Jean-Pierre1,Darley-Usmar Victor M.2

Affiliation:

1. Department of Clinical Pharmacology, Center for AIDS Research,1 and

2. Department of Pathology, Center for Free Radical Biology,2University of Alabama at Birmingham, Birmingham, Alabama 35294-0019

Abstract

ABSTRACT Numerous studies have reported effects of antiviral nucleoside analogs on mitochondrial function, but they have not correlated well with the observed toxic side effects. By comparing the effects of the five Food and Drug Administration-approved anti-human immunodeficiency virus nucleoside analogs, zidovudine (3′-azido-3′-deoxythymidine) (AZT), 2′,3′-dideoxycytidine (ddC), 2′,3′-dideoxyinosine (ddI), 2′,3′-didehydro-2′,3′-deoxythymidine (d4T), and β-L-2′,3′-dideoxy-3′-thiacytidine (3TC), as well as the metabolite of AZT, 3′-amino-3′-deoxythymidine (AMT), on mitochondrial function in a human hepatoma cell line, this issue has been reexamined. Evidence for a number of mitochondrial defects with AZT, ddC, and ddI was found, but only AZT induced a marked rise in lactic acid levels. Only in mitochondria isolated from AZT (50 μM)-treated cells was significant inhibition of cytochrome c oxidase and citrate synthase found. Our investigations also demonstrated that AZT, d4T, and 3TC did not affect the synthesis of the 11 polypeptides encoded by mitochondrial DNA, while ddC caused 70% reduction of total polypeptide content and ddI reduced by 43% the total content of 8 polypeptides (including NADH dehydrogenase subunits 1, 2, 4, and 5, cytochrome c oxidase subunits I to III, and cytochrome b ). We hypothesize that in hepatocytes the reserve capacity for mitochondrial respiration is such that inhibition of respiratory enzymes is unlikely to become critical. In contrast, the combined inhibition of the citric acid cycle and electron transport greatly enhances the dependence of the cell on glycolysis and may explain why apparent mitochondrial dysfunction is more prevalent with AZT treatment.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3